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Abstract
We examine the regular part of optical conductivity in the strong-coupling limit
of a hole-doped two-dimensional triangular Hubbard model near half filling.
A numerically exact diagonalization method based on the Lanczos technique
is employed for a 21-site triangular lattice. The regular part is calculated by
averaging over various twisted boundary conditions to reduce finite-size effects.
We find that the spectra show strong incoherent excitations extended to a higher
energy region irrespective of the sign of the hopping amplitude. This is in
contrast to the case of a square lattice without frustration. The results imply
that geometrical frustration in strongly correlated electron systems influences
incoherent charge dynamics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interplay of geometrical frustration and strong electron correlation is one of the hot topics
in the field of strongly correlated electron systems. The simplest example of such geometry
is a triangular lattice in two dimensions (2D) [1]. In the triangular lattice, a three-sublattice
coplanar-type antiferromagnetic (AF) order [2–4] at half filling under strong on-site Coulomb
interaction is expected to be easily destroyed by carrier doping. In fact, it has been suggested
that for the positive sign of hopping amplitude (t > 0) a resonant valance-bond state is favoured
with hole doping [5] and d + id-wave superconductivity appears [6]. It was also suggested that
three-sublattice magnetism is stable for a wide range of doping [7]. On the other hand, for t < 0
Nagaoka ferromagnetism emerges with doping [5–8]. These results indicate that geometrical
frustration and strong correlation give rise to strong competition among many states.

The variety of the ground states in the triangular lattice may induce unconventional charge
dynamics through coupling with frustrated magnetism. However, there are few theoretical
studies about charge dynamics away from half filling, except for the Fermion-spin theory of

0953-8984/07/145287+05$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/14/145287
mailto:tohyama@imr.tohoku.ac.jp
http://stacks.iop.org/JPhysCM/19/145287


J. Phys.: Condens. Matter 19 (2007) 145287 T Tohyama

the t–J model [9, 10]. Therefore, it is very important to investigate the effect of frustration
on charge dynamics and to clarify the interplay of the charge and spin degrees of freedom in
geometrically frustrated systems.

In this paper we perform an exact diagonalization study of the doping dependences
of the optical conductivity for a 21-site triangular Hubbard cluster with large on-site
Coulomb interaction. We introduce an averaging procedure over various twisted boundary
conditions (BC) to reduce finite-size effects. We find that the regular part of the optical
conductivity shows very strong incoherent excitations extended to a high-energy region of
several times t . Such high-energy incoherent excitations are not seen in the square lattice.
This implies that geometrical frustration causes unconventional charge dynamics.

The rest of this paper is organized as follows. We introduce an effective Hamiltonian
of the Hubbard model in the strong-coupling limit, and show outlines of the procedure for
choosing boundary conditions in the triangular lattice in section 2. Section 3 presents the
doping dependence of the regular part of the optical conductivity. Comparison with that for the
square lattice will be made. A summary is given in section 4.

2. Model and method

The Hubbard model with nearest-neighbour hopping t and on-site Coulomb interaction U is
given by

HHub = −t
∑

〈i, j〉,σ

(
c†

i,σ c j,σ + H.c.
)

+ U
∑

i

ni,↑ni,↓, (1)

where ci,σ annihilates an electron with spin σ at site i , and ni,σ = c†
i,σ ci,σ , and the summation

〈i, j〉 runs over nearest-neighbour pairs. Being interested in the region of U � t , we take the
strong-coupling limit of equation (1). The resulting Hamiltonian reads

HSC = Ht J + H3S (2)

with

Ht J = −t
∑

〈i, j〉,σ

(
c̃†

i,σ c̃ j,σ + H.c.
)

+ J
∑

〈i, j〉

(
Si · S j − 1

4 ñi ñ j
)
, (3)

and

H3S = − J

4

∑

〈i, j,k〉,σ,σ ′

(
1 − ni,−σ

)
c†

i,σ c j,σ n j,−σ × n j,−σ ′ c†
j,σ ′ck,σ ′

(
1 − nk,−σ ′

)
, (4)

where J = 4t2/U , c̃i,σ = ci,σ (1 − ni,−σ ), ñi = ∑
σ c̃†

i,σ c̃i,σ , and 〈i, j, k〉 denotes a pair of
three nearest-neighbour sites. We use U/t = 20, which is above a critical U/t [11, 12] for the
metal–insulator transition at half filling.

The exact diagonalization method based on the Lanczos algorithm is frequently applied
to Hubbard-type models as an unbiased numerical method. In this study, we take a 21-site
triangular lattice with the translation vectors Ra = 4u + v and Rb = −u + 5v, where u and
v are the vectors connecting nearest-neighbour sites given by u = x and v = 1

2 x +
√

3
2 y with

the unit vector x (y) in the x (y) direction. The shape of the cluster and momenta defined under
periodic BC are shown in figure 1.

In such a small cluster, we are not free from finite-size effects. In order to reduce the
finite-size effects, we introduce various BC with a twist and average physical quantities over the
twisted BC. This procedure has been applied for various quantities in t–J -type models [13–15].
The twist induces the condition that ci+Ra ,σ = eiφa ci,σ and ci+Rb,σ = eiφb ci,σ with arbitrary
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Figure 1. (a) The 21-site triangular lattice studied in this work. The filled circles denote lattice sites
and the lines represent the translation vectors. (b) The first Brillouin zone of the triangular lattice.
The filled circles denote momenta defined in the 21-site lattice with periodic boundary conditions.
The distance between the nearest-neighbour sites is set to be unity.

phases φa and φb. φa(b) is defined as φa(b) = κ · Ra(b) with κ = κxx + κyy. κ is taken within
an area surrounded by four corners at (κx , κy) = ± π

21 (4, 6√
3
) and ± π

21 (6,−4
√

3). For the
averaging procedure, we choose many κ with equal intervals of π/40 in the area for one-to
four-hole cases. The total number of κ results in Nκ = 353. For a five-hole case, we take a
smaller number Nκ = 177 because of time-consuming computations. This averaging procedure
has been used for a triangular lattice for calculating the magnetic correlation function and the
chemical potential as well as the optical conductivity [16].

The real part of the optical conductivity reads σ(ω) = 2π Dδ(ω) + σreg(ω), where D is
the Drude weight and σreg(ω) represents the regular part with finite ω. Under the averaging
procedure, σreg(ω) is given by

σreg(ω) = 1

Nκ

∑

κ

1

Nω
Im

〈
�κ

0

∣∣ j κ
x

1

ω + Eκ
0 − HSC − iγ

j κ
x

∣∣�κ
0

〉
, (5)

where
∣∣�κ

0

〉
represents the ground state with energy Eκ

0 for a given κ and HSC is the same as
in equation (2) but under the twisted BC. The x component of the current operator is given
by jx = i

[
HSC, x̂

]
, where x̂ is the x component of the total position operator. A standard

continued-fraction expansion method based on the Lanczos algorithm is used to calculate the
correlation function in equation (5) with the broadening factor γ = 0.05|t|.

3. Results and discussions

Figure 2 shows the doping dependence of σreg(ω) for the 21-site triangular lattice with t > 0
and t < 0. We find that incoherent excitations are widely extended to a high-energy region up
to several times t , irrespective of the sign of t . This is completely different from the Hubbard
model in one dimension, where spin and charge are completely decoupled and incoherent
weights are negligibly small [17]. Also such incoherent excitations are different from those of
the square lattice. For comparison, σreg(ω) in a 20-site square lattice is shown in figure 3. In the
calculation, we take Nκ = 320 [14, 15]. The origin of the incoherent part in the square lattice
is well understood based on the picture that magnetic polarons move in the system by inducing
magnetic excitations scaled by the exchange interaction J = 4t2/U ∼ 0.2t . Therefore, the
incoherent spectral weight shown in figure 3 is mainly located below ω ∼ t . Very incoherent
σ(ω) up to several t in the triangular lattices clearly indicates that such a magnetic-polaron
picture cannot be applied.
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Figure 2. Regular part of the optical conductivity σreg(ω) for various hole concentrations of the
strong-coupling limit of the Hubbard model with U/t = 20. (a) t > 0 and (b) t < 0 for a 21-site
triangular lattice. The numbers in the panels represent the hole concentration.

Figure 3. Regular part of the optical conductivity σreg(ω) for various hole concentrations of the
strong-coupling limit of a 20-site square Hubbard lattice with U/t = 20. The numbers in the panels
represent the hole concentration.

An interesting feature of σ(ω) for both the t > 0 and t < 0 triangular lattices is that
the incoherent spectral weight increases with increasing δ without changing its global energy
distribution in the region of t � ω � 5t . Furthermore, the spectral weight of the incoherent
part is larger than that of the square lattice. This means that the motion of carriers is more
incoherent than the square lattice. Enhanced incoherent structures have also been discussed
in terms of the single-hole spectral function in triangular antiferromagnets [18] as well as in
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kagome antiferromagnets [19]. Both quantities may have common origins. A possible origin
is nontrivial phases from the spin degrees of freedom [20] with strong frustration. The phases
may act as random fields on carriers and induce incoherent excitations. Obtaining analytical
expressions for theses effects is a problem for the future. We note that such an enhanced
incoherency might be a possible origin of the anomalous incoherent contribution of σ(ω)

observed in a triangular compound Na0.7CoO2 [21].

4. Summary

In summary, we have performed an exact diagonalization study of the doping dependence of
the regular part of the optical conductivity for a triangular Hubbard model. We find that the
optical conductivity shows very strong incoherent excitations, which are absent in the square
lattice. This implies that geometrical frustration influences the incoherent charge dynamics.
Since the optical conductivity sees only the momentum-conserved charge excitation, it should
be interesting to investigate momentum-dependent charge dynamics. This study is now in
progress.
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[7] Weber C, Läuchli A, Mila F and Gramarchi T 2006 Phys. Rev. B 73 014519
[8] Merino J, Powell B J and McKenzie R H 2006 Phys. Rev. B 73 235107
[9] Yu W Q, Feng S, Huang Z B and Lin H Q 2000 Phys. Rev. B 61 7409

[10] Liu B, Liang Y, Feng S and Chen W Y 2004 Phys. Rev. B 69 224506
[11] Capone M, Capriotti L, Becca F and Caprara S 2001 Phys. Rev. B 63 085104
[12] Powell B J and McKenzie R H 2005 Phys. Rev. Lett. 94 047004
[13] Poilblanc D 1991 Phys. Rev. B 44 9562
[14] Tohyama T 2004 Phys. Rev. B 70 174517
[15] Tohyama T 2006 J. Phys. Soc. Japan 75 034713
[16] Tohyama T 2006 Phys. Rev. B at press
[17] Horsch P and Stephan W 1993 Phys. Rev. B 48 10595
[18] Trumper A E, Gazza C J and Manuel L O 2004 Phys. Rev. B 69 184407
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